52 research outputs found

    Un nuevo esquema de agrupación para redes sensoras inalåmbricas de radio cognitivas heterogéneas

    Get PDF
    Introduction: This article is the product of the research “Learning-based Spectrum Analysis and Prediction in Cognitive Radio Sensor Networks”, developed at Sejong University in the year 2019. Problem: Most of the clustering schemes for distributed cognitive radio-enabled wireless sensor networks consider homogeneous cognitive radio-enabled wireless sensors. Many clustering schemes for such homogeneouscognitive radio-enabled wireless sensor networks waste resources and suffer from energy inefficiency because of the unnecessary overheads. Objective: The objective of the research is to propose a node clustering scheme that conserves energy and prolongs network lifetime. Methodology: A heterogeneous cognitive radio-enabled wireless sensor network in which only a few nodes have a cognitive radio module and the other nodes are normal sensor nodes. Along with the hardware cost, theproposed scheme is efficient in energy consumption. Results: We simulated the proposed scheme and compared it with the homogeneous cognitive radio-enabled wireless sensor networks. The results show that the proposed scheme is efficient in terms of energyconsumption. Conclusion: The proposed node clustering scheme performs better in terms of network energy conservation and network partition. Originality: There are heterogeneous node clustering schemes in the literature for cooperative spectrum sensing and energy efficiency, but to the best of our knowledge, there is no study that proposes a non-cognitiveradio-enabled sensor clustering for energy conservation along with cognitive radio-enabled wireless sensors. Limitations: The deployment of the proposed special device for cognitive radio-enabled wireless sensors is complicated and requires special hardware with better battery powered cognitive sensor nodes

    A Distributed Geo-Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads

    Auto-colorization of historical images using deep convolutional neural networks

    Get PDF
    Funding Information: Acknowledgments: This work was supported by the Research Center of College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia. The authors are grateful for this support.Peer reviewedPublisher PD

    Leveraging metaheuristics with artificial intelligence for customer churn prediction in telecom industries

    Get PDF
    Customer churn prediction (CCP) is among the greatest challenges faced in the telecommunication sector. With progress in the fields of machine learning (ML) and artificial intelligence (AI), the possibility of CCP has dramatically increased. Therefore, this study presents an artificial intelligence with Jaya optimization algorithm based churn prediction for data exploration (AIJOA-CPDE) technique for human-computer interaction (HCI) application. The major aim of the AIJOA-CPDE technique is the determination of churned and non-churned customers. In the AIJOA-CPDE technique, an initial stage of feature selection using the JOA named the JOA-FS technique is presented to choose feature subsets. For churn prediction, the AIJOA-CPDE technique employs a bidirectional long short-term memory (BDLSTM) model. Lastly, the chicken swarm optimization (CSO) algorithm is enforced as a hyperparameter optimizer of the BDLSTM model. A detailed experimental validation of the AIJOA-CPDE technique ensured its superior performance over other existing approaches

    Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat

    Get PDF
    Wheat is an important dietary source of zinc (Zn) and other mineral elements in many countries. Dietary Zn deficiency is widespread, especially in developing countries, and breeding (genetic biofortification) through the HarvestPlus programme has recently started to deliver new wheat varieties to help alleviate this problem in South Asia. To better understand the potential of wheat to alleviate dietary Zn deficiency, this study aimed to characterise the baseline effects of genotype (G), site (E), and genotype by site interactions (GxE) on grain Zn concentration under a wide range of soil conditions in India. Field experiments were conducted on a diverse panel of 36 Indian-adapted wheat genotypes, grown on a range of soil types (pH range 4.5–9.5), in 2013–14 (five sites) and 2014–15 (six sites). Grain samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The mean grain Zn concentration of the genotypes ranged from 24.9–34.8 mg kg-1, averaged across site and year. Genotype and site effects were associated with 10% and 6% of the overall variation in grain Zn concentration, respectively. Whilst G x E interaction effects were evident across the panel, some genotypes had consistent rankings between sites and years. Grain Zn concentration correlated positively with grain concentrations of iron (Fe), sulphur (S), and eight other elements, but did not correlate negatively with grain yield, i.e. no yield dilution was observed. Despite a relatively small contribution of genotype to the overall variation in grain Zn concentration, due to experiments being conducted across many contrasting sites and two years, our data are consistent with reports that biofortifying wheat through breeding is likely to be effective at scale given that some genotypes performed consistently across diverse soil types. Notably, all soils in this study were probably Zn deficient and interactions between wheat genotypes and soil Zn availability/management (e.g. the use of Zn-containing fertilisers) need to be better-understood to improve Zn supply in food systems

    A Survey on Node Clustering in Cognitive Radio Wireless Sensor Networks

    No full text
    Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled

    A MAC Protocol for CR-WSN without a Dedicated Common Control Channel

    No full text
    We present a decentralized medium access control protocol for cognitive radio wireless sensor networks. The proposed protocol allows secondary wireless sensors nodes to recognize spectrum opportunities and transmits data based on the licensed users’ arrival prediction on the channel. It estimates the number of active cognitive wireless sensor nodes and it also adjusts the sleep cycle in order to conserve energy. The proposed protocol does not need a dedicated common control channel to negotiate for the data channels. We evaluate delay, energy consumption, and goodput, which are the three important qualities of service parameters through simulation. The simulation results show that the proposed approach achieves higher energy conservation with a small cost of delay and adequate aggregated goodput

    Feature-Based Sentimental Analysis on Public Attention towards COVID-19 Using CUDA-SADBM Classification Model

    No full text
    The COVID-19 pandemic has spread to almost all countries of the World and affected people both mentally and economically. The primary motivation of this research is to construct a model that takes reviews or evaluations from several people who are affected with COVID-19. As the number of cases has accelerated day by day, people are becoming panicked and concerned about their health. A good model may be helpful to provide accurate statistics in interpreting the actual records about the pandemic. In the proposed work, for sentimental analysis, a unique classifier named the Sentimental DataBase Miner algorithm (SADBM) is used to categorize the opinions and parallel processing, and is applied on the data collected from various online social media websites like Twitter, Facebook, and Linkedin. The accuracy of the proposed model is validated with trained data and compared with basic classifiers, such as logistic regression and decision tree. The proposed algorithm is executed on CPU as well as GPU and calculated the acceleration ratio of the model. The results show that the proposed model provides the best accuracy compared with the other two models, i.e., 96% (GPU)

    Cuffless Blood Pressure Estimation with Confidence Intervals using Hybrid Feature Selection and Decision Based on Gaussian Process

    No full text
    Cuffless blood pressure (BP) monitoring is crucial for patients with cardiovascular disease and hypertension. However, conventional BP monitors provide only single-point estimates without confidence intervals. Therefore, the statistical variability in the estimates is indistinguishable from the intrinsic variability caused by physiological processes. This study introduced a novel method for improving the reliability of BP and confidence intervals (CIs) estimations using a hybrid feature selection and decision method based on a Gaussian process. F-test and robust neighbor component analysis were applied as feature selection methods for obtaining a set of highly weighted features to estimate accurate BP and CIs. Akaike’s information criterion algorithm was used to select the best feature subset. The performance of the proposed algorithm was confirmed through experiments. Comparisons with conventional algorithms indicated that the proposed algorithm provided the most accurate BP and CIs estimates. To the best of the authors’ knowledge, the proposed method is currently the only one that provides highly reliable BP and CIs estimates. Therefore, the proposed algorithm may be robust for concurrently estimating BP and CIs
    • 

    corecore